ECS455 Chapter 2 Cellular Systems

Dr.Prapun Suksompong

Office Hours:

BKD, 6th floor of Sirindhralai building
Tuesday $\quad 14: 20-15: 20$
Wednesday 14:20-15:20
Friday $\quad 9: 15-10: 15$

Pre-Cellular System
 Area over which reliable radio

- Achieve a large coverage area by using a single, high powered transmitter.
- Put BS on top of mountains or tall towers
- Next BS was so far away that interference was not an issue.
- Severely limit the number of users that could communicate simultaneously.
- Noise-limited system with few users.
- Bell mobile system in New York City in the 1970s could only support a maximum of twelve simultaneous calls over a thousand square miles.

$$
\left(1\left[\mathrm{mi}^{2}\right] \approx 2.56\left[(\mathrm{~km})^{2}\right]\right)
$$

Pre-Cellular System: Examples

- Using a typical analog system, each channel needs to have a bandwidth of around 25 kHz
- to enable sufficient audio quality to be carried, - as well as allowing for a guard band between adjacent siffanals to
ensure there are no undue levels of interference.
- Can accommodate only 40 users in a frequency "chunk" of 1 MHz wide.
- Even if $100 \mathbf{M H z}$ were allocated to the system, this would enable only 4000 users to have access to the system.
- Today cellular systems have millions of subscribers, and therefore a far more efficient method of using the available spectrum is needed.

Pre-Cellular System

- Regions need to be well-separated!

ECS455 Chapter 2 Cellular Systems

2.1 Frequency Reuse

Dr.Prapun Suksompong
5 prapun.com/ecs455

First, let's hear it in his own words...

- "The whole concept of cellular telephony..."

["The Communicators", Saturday, March 6, 2010]

Cellular systems

- The coverage area is divided into many small areas (cells).
- Replace
- a single, high power transmitter with

Area over which reliable radio communication can occur btw a BS and MSs.

- many low-power transmitters each providing coverage to only one cell area (a small portion of the service area).
- Power is lowered from hundreds of watts to a few watts, or even less than one watt per channel.
- Frequency/Channel Reuse: Divide the available channels (frequency bands) into groups/sets. Different channel sets are assigned to different cells. The same channel sets may be reused at spatially separated locations.
- Co-channel cells = Cells that are assigned the same channel set

Idea (1)

- Suppose the whole system has $S=70$ frequency channels
- Pre-cellular:

"Capacity" of the system
= \# users the system can support simultaneously $=70 \times 3=210$

Idea (2)

- Cellular:

- Split 70 channels into 7 groups (A,B,C,D,E,F,G).
- Each group has m $=10$ channels. Cells using the same groups are far apart.

Less interference (Recall that P_{r} is inversely proportional to d^{γ}.)

(1) A cluster is a grouping of cells in which

Idea (3)

- Some Terminology: each cell uses different frequencies.
A cell's frequencies may be reused by other cells in the system, but those cells will be in other clusters and therefore sufficiently far away not to cause interference.
[Klemens, 2010, p 59]

Reuse Distance (D) = minimum distance between the centers of cells that use the same channel set

Idea (4)

- To support more users (increase capacity), simply use smaller cell size (area).

"Capacity" of the system
= \# users the system can support simultaneously >> 210

Cellular systems: Handoff

- Sophisticated switching technique
- Enable a call to proceed uninterrupted when the user moves from one cell to another.
- The system can switch moving users between towers to find the strongest signal.

a. Before handoff
b. After handoff

Can we keep reducing the cell size?

- While smaller cells generally increase capacity, they also have their disadvantages.
- Smaller cell size increases the rate at which handoffs occur, which increases the dropping probability if the percentage of failed handoffs stays the same.
- Smaller cells increase the load on the backbone network.
- More cells per unit area requires more base stations, which can increase system cost.
- Propagation characteristics typically change as cell size shrinks, so the system does not scale perfectly.

Cellular systems: History

- The concept of cells was first proposed (in an unpublished work) as early as 1947 by Douglas H. Ring at Bell Laboratories in the US

- Detailed proposal for a "High-Capacity Mobile Telephone System" incorporating the cellular concept submitted by Bell Laboratories to the FCC in 1971.
- The first commercial AMPS system was deployed in Chicago in 1983.

Basic cellular system

1. Mobile stations (MS) or user equipment (UE) or cellular telephones
2. Base stations (BS) or cell sites - Serve as a bridge between all mobile users in the cell and connects the simultaneous mobile calls to the MSC.

- Generally have towers which support several transmitting and receiving antennas.

- Simultaneously handle full duplex communications.
- Each mobile communicates via radio with one of the base stations and may be handed-off to any number of base stations throughout the duration of a call.

Basic cellular system (2)

3. Mobile switching center (MSC)

- Sometimes called a mobile telephone switching office (MTSO)
- Coordinates the activities of all of the base stations
- Coordinating which BS will handle a call to or from a user and when to handoff a user from one base-station to another.

- Connect the entire cellular system to the PSTN (public switched telephone network) for landline calls and Internet access.

How a Cell Phone Call Works

Cell phones are radio devices - they communicate by transmitting and receiving voice over an area.

First a cell phone radios the nearest cell tower (or site). When you make a call or turn your phone on, your phone sends a message via radio that's picked up by the tower's antennas.

1

(3)

The call (along with many others) gets routed to a backhaul - usually down to an underground wired T1 or T3 line, but sometimes back up the mast to a powerful line-of-sight wireless microwave antenna (typically only used either when there isn't a ground connection, or when the ground connection is poor).

Next, a wire or fiberoptic line carries the call down to the wireless access point, connected to a multi-port switch.

The incoming call or data comes back from the backhaul and up through the switch to the antenna, where it then hits your phone (presuming your phone is still communicating with the same site). If you are moving, then there's a handoff-a new but more or less identical cell site transmits the data to your phone, once your phone checks in.

Common Air Interface (CAI)

- Standard for communication between BS and MSs

1. Voice channels

- Forward voice channels (FVC) : voice transmission from BS to MSs
- Reverse voice channels (RVC): voice transmission from MSs to BS

2. Control channels

- Often called setup channels
- Forward control channels (FCC) and reverse control channels (RCC)
- Involve in setting up a call and moving it to an unused voice channel.
- Transmit and receive data messages that carry call initiation and service requests
- Monitored by mobiles when they do not have a call in progress.
- Typically, 5\% control channels and 95\% voice channels.

Frequency Reuse (Review)

"The use of radio channels on the same carrier frequency to cover different areas which are separated from one another by sufficient distances so that co-channel interference is not objectionable."

- Employed not only in mobile-telephone service but also in entertainment broadcasting and many other radio services.

(โทรทัศน์ภาคพื้นดิน)
 Terrestrial TV in BKK

ความถีสัญญาณโทรทัศน์ VHF.(Low Band)			
Channel .	Bandwidth.	Picture Carrier.	Audio Carrier.
2	$47-54$	48.25	53.75
3	$54-61$	55.25	60.75
4	$61-68$	62.25	67.75

ความถี่สัญญาณโทรทัศน์ VHF.(Hight Band)			
Channel	Bandwidth.	Picture Carrier.	Audio Carrier.
5	174-181	175.25	180.75
6	181-188	182.25	187.75
7	188-195	189.25	194.75
8	195-202	196.25	201.75
9	202-209	203.25	208.75
10	209-216	210.25	215.75
11	216-223	217.25	222.75
12	223-230	224.25	229.75
ความถี่สัญญาณโทรทัศน์ UHF.(Band 4)			
Channel	Bandwidth.	Picture Carrier.	Audio Carrier.
26	510-518	511.25	516.75
27	518-526	519.25	524.75
28	526-534	527.25	532.75
29	534-542	535.25	540.75
30	542-550	543.25	548.75
31	550-558	551.25	556.75
32	558-566	559.25	564.75
33	566-574	567.25	562.75
34	574-582	575.25	580.75

Channel .	Bandwidth.	Picture Carrier.	Audio Carrier.
5	$174-181$	175.25	180.75
6	$181-188$	182.25	187.75
7	$188-195$	189.25	194.75
8	$195-202$	196.25	201.75
9	$202-209$	203.25	208.75
10	$209-216$	210.25	215.75
11	$216-223$	217.25	222.75
12	$223-230$	224.25	229.75
ความถี่สัญญาณโทรทัศน์ UHF.(Band 4)			
Channel	Bandwidth.	Picture Carrier.	Audio Carrier.
.	Bry		
26	$510-518$	511.25	516.75
27	$518-526$	519.25	524.75
28	$526-534$	527.25	532.75
29	$534-542$	535.25	540.75
30	$542-550$	543.25	548.75
31	$550-558$	551.25	556.75
32	$558-566$	559.25	564.75
33	$566-574$	567.25	562.75
34	$574-582$	575.25	580.75

Digital Terrestrial TV: MUX

"มัลติเพล็กซ์" หมายความว่า โครงข่ายตามกฎหมายฯ ที่รวบรวมบริการกระจายเสียงหรือโทรทัศน์ หรือบริการ สัญญาณอื่นใดที่จำเป็น เพื่อส่งหรือถ่ายทอดผ่านช่องสัญญาณเดียวพร้อมกัน

 กางจัตกลุ่แเ่วงตวาบกี่หน้า ๔.๖
เล่ม ๑๒ส ตอนพิเศษ ๑สส ง ราชกิจจานุเบกษา ๑๘ ธันวาคม ๒๕ะ๕๕

ประกาศคณะกรรมการกิจการกระจายเสียง กิจการโทรทัศน์ และกิจการโทรคมนาคมแห่งชาติ
เรื่อง แผนความถี่วิทยุสำหรับกิจการโทรทัศน์ภาคพื้นดินในระบบดิจิตอล

กลุ่มช่อง	จำนวน	หมายเลขช่องความถี่วิทยุ															
ความถี วิทยุ	$\begin{gathered} \text { ช่อง } \\ \text { ความีี่ } \end{gathered}$	N-3	N	N+3	N+4	N+6	N+7	N+8	$\begin{aligned} & \hline \mathrm{N}+ \\ & 11 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}+ \\ & 12 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}+ \\ & 15 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}+ \\ & 16 \end{aligned}$	$\begin{aligned} & \mathrm{N}+ \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}+ \\ & 19 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}+ \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}+ \\ & 23 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}+ \\ & 24 \\ & \hline \end{aligned}$
D1	7	-	28	31	-	-	35	-	39	-	43	-	-	47	-	51	-
D2	7	26	29	32	-	-	36	-	40	-	44	-	-	48	-	-	-
D3	7	27	30	33	-	-	37	-	41	-	45	-	-	49	-	-	-
D4	7	-	34	-	38	-	-	42	-	46	-	50	-	-	54	57	-
D5	3	-	52	55	-	58	-	-	-	-	-	-	-	-	-	-	-
D6	3	-	53	56	-	59	-	-	-	-	-	-	-	-	-	-	-
T-D1	7	-	26	-	30	-	-	34	-	38	-	42	-	-	46	-	50
T-D2	7	-	28	-	32	-	-	36	-	40	-	44	-	-	48	-	52

หมายเหต กลุ่มช่องความถี่วิทยุ $T-D 1$ และ $T-D 2$ เป็นการจัดกลุ่มช่องความถี่สำหรับกิจการโทรทัศน์
ภาคพื้นดินในระบบดิจิตอลบริเวณชายแดนระหว่างประเทศไทยและประเทศมาเลเซีย

No.	Name	G	$\# 1$	$\# 2$	$\# 3$	$\# 4$	$\# 5$
1.0	กรุงเทพ	D2	26	36	40	44	48
1.1	ท่าตะเกียบ	D1	28	31	35	39	43
1.2	พัทยา	D3	27	30	33	37	41
1.3	หนองใหญ่ ชลบุรี	D4	34	38	42	46	50
1.4	นครนายก	D1	28	31	35	39	43
1.5	สมุทรสงคราม	D2	26	36	40	44	48
1.6	พระนครศรีอยุธยา	D2	26	36	40	44	48
2.0	กาญจนบุรี	D3	27	30	41	45	49
2.1	ทองผาภูมิ	D2	32	36	40	26	29
2.2	ศรีสวัสดิ์	D3	33	37	41	27	30
2.3	สังขละบุรี	D1	35	39	43	28	31
2.4	ราชบุรี	D3	33	37	41	27	30
2.5	จอมบึง	D2	26	36	40	44	41
2.6	โพธาราม	D3	33	37	41	27	30
3.0	สิงห์บีรี	D1	47	51	35	39	43
3.1	สุพรรณบุรี	D1	47	51	35	39	43
3.2	ด่านช้าง	D2	29	32	36	40	26
3.3	มวกเหล็ก	D1	47	51	35	39	43
3.4	ชยั บาดาล	D1	47	51	35	39	43
3.5	ชยนาท	D1	47	51	35	39	43
4.0	ระยอง	D1	47	31	35	39	43
4.1	โป่งม้าร้อน	D3	40	26	29	32	36
4.2	แก่งหางแมว	27	30	33	37		
4.3	มะขาม	D4	50	34	38	42	46
4.4	จันทรบุรี	47	31	35	39	43	

(aưuñ 2): สாาйкลกํ

— หมายเลขช่องความถี่วิทยุในเครื่องหมายวงเล็บ หมายถึง หมายเลขช่องความถี่วิทยุซึ่งะะนำมาใช้งนนเป็นการชั่วคราวก่อนยุติการรับส่ง สัญญาณวิทยุโทรทัศน์ในระบบแอนะล็อก ระหว่างที่หมายเลขช่องความถี่วิยุ้้างหน้าเครื่องหมายวงเล็บัังไม่อนุญาตให้นำมาใช้งาน

No.	Name	$\# 1$	$\# 2$	$\# 3$	$\# 4$	$\# 5$	$\# 6$
1.0	กรุงเทพมหานคร	26	36	40	44	$32(52)$	29
2.0	กาญจนบุรี	49	37	41	30	27	33
3.0	สิงห์บุรี	35	51	47	39	$31(55)$	28
4.0	ระยอง	45	59	53	56	43	48
5.0	สระแก้ว	54	$50(42)$	46	38	57	34
6.0	ตราด	33	37	41	49	30	27
7.0	ประจวบคีรัขันธ์	46	50	54	57	38	34
8.0	นครราชสีมา	$41(58)$	$49(52)$	30	33	37	27
9.0	ชัยภูมิ	$31(55)$	47	39	35	51	28
10.0	สุรินทร์	$26(42)$	32	40	36	44	29
11.0	ศรีสะเกษ	41	$30(52)$	$33(58)$	$27(37)$	49	37
12.0	อุบลราชธานี	41	$30(52)$	$33(58)$	$27(26)$	49	52
13.0	มุกดาหาร	47	39	35	28	51	31
14.0	ร้อยเอ็ด	57	50	46	$54(60)$	$34(55)$	38
15.0	ขอนแก่น	59	45	$53(52)$	56	48	43
16.0	เลย	46	$50(42)$	57	54	38	34
17.0	อุดรธานี	47	35	$31(55)$	39	51	28
18.0	บึงกาฬ	44	32	36	40	$26(52)$	29
19.0	สกลนคร	30	49	41	33	$37(58)$	27

20.0	เชียงใหม่	46(60)	50	54	57	38	34
21.0	แม่ฮ่องสอน (ดอย กองมู)	37	41	49	30	33	27
22.0	ลำปาง	26	44	32	36	40	29
23.0	เชียงราย	49	30	33	37	41	27
24.0	น่าน	28	31	35	39	51	47
25.0	แพร่	45	48	59	56	43	53
26.0	อุตรดิตถ์	41	30	33	37(52)	49	52
27.0	สุโขทัย	41	30	33	37(52)	49	27
28.0	ตาก	31	35	39	51	47	28
29.0	นครสวรรค์	57	46	50	54	38	34
30.0	เพชรบูรณ์	40	44	29	32	36	26
31.0	ชุมพร	51	47	31	35	39	28
32.0	ระนอง	49	30	37	41	33	27
33.0	สุราษฎร์ธานี	26	36	40	44	32	29
34.0	ภูเก็ต	35	39	51	47	31	28
35.0	นครศรีธรรมราช	30	33	37	41	49	27
36.0	ตรัง	43	59	48	53	56	45
37.0	สงขลา	50	42	46	38(54)	26	34
38.0	สตูล	50(52)	42	46(60)	38	26	52
39.0	ยะลา	32	48	36	44	28	40

Frequency Reuse (Review)

- Cellular radio systems rely on an intelligent allocation and reuse of channels throughout a coverage region
- Each cellular BS is allocated a group of radio channels to be used within the corresponding cell.
- BSs in adjacent cells are assigned channel groups which contain completely different channels than neighboring cells.
- By limiting the coverage area to within the boundaries of a cell, the same group of channel may be used to cover different cells that are separated from one another by distances large enough to keep interference levels within tolerable limits.
- The minimum distance between two cells that use the same channel set is called the reuse distance.

Cell Shape

- The actual radio coverage of a cell is known as the footprint.
- Determined from field measurements or propagation prediction models.
- In reality, it is not possible to define exactly the edge of a cell.
- Signal strength gradually reduces, and towards the edge of the cell performance falls.
- MSs have different levels of sensitivity, this adds a further greying of the edge of the cell.
- Impossible to have a sharp cut-off between cells.
- In some areas they may overlap, whereas in others there will be a hole in coverage.
- Although the real footprint is amorphous in nature, a regular cell shape is needed for systematic system design and adaptation for future growth.

Hexagonal cell shape

- Simplistic model of the radio coverage for each BS.
- Universally adopted
- Permit easy and manageable analysis

Why hexagon?

- Omnidirectional BS antenna and free space propagation \rightarrow Circular radiation pattern.
Adjacent circles cannot be overlaid upon a map without leaving gaps or creating overlapping regions.
- Tessellating Cell Shapes: When considering geometric shapes which cover an entire region without overlap and with equal area, there are three sensible choices: a square, an equilateral triangle, and a hexagon.

Diamond and rectangles are also tessellating shapes.

Why hexagon? (2)

- A cell must be designed to serve the weakest mobiles within the footprint, and these are typically located at the edge of the cell.
- For a given distance between the center of a polygon and its farthest perimeter points, the hexagon has the largest area of the three.
- By using the hexagon geometry, the fewest number of cells can cover a geographic region

Tessellation (tiling of a plane)

- If you can cover a flat surface using only identical copies of the same shape leaving neither gaps nor overlaps, then that shape is said to tile the plane.
- Every triangle can tile the plane.
- Every four-sided (quadrilaterals) shape can also tile the plane.
- The regular pentagon cannot tile the plane. (A regular pentagon has equal side lengths and equal angles between sides, like, say, a cross section of okra, or, erm, the Pentagon). But some nonregular pentagons can.
- It was proved in 1963 that there are exactly three types of convex hexagon that tile the plane.
- No convex heptagon, octagon, or anything else-gon tiles the plane.

Since 1985, there are 14 types

- The hunt to find and classify the pentagons that can tile the plane has been a century-long mathematical quest

The 15th type is discovered in 2016

- University of Washington Bothell
- The researchers used a computer to exhaustively search through a large but finite set of possibilities

Frequency Reuse Plan

- The frequency reuse plan is overlaid upon a map to indicate where different channel sets are used.
- Cells labeled with the same letter use the same group of channels.
- Create co-channel interference

Clusters

- The total coverage area is divided into clusters.
- The number of cells (N) in a cluster is called the cluster size.
- Cells in a cluster collectively use the complete set of available frequencies.
- No co-channel interference within a cluster.
- Replicated over the coverage area.
- Example: The picture shows clusters of size $N=7$, outlined in bold.

Large. $N=$ larger $D=$ less

$$
\text { Frequency Reuse }(N=4, N=7) \quad \text { interference }
$$

Frequency reuse factor $=1 / \mathrm{N}$
(Each cell within a cluster is only assigned $1 / \mathrm{N}$ of the total available channels in the system.)

"Capacity"

Ability to handle
 simultaneous numbers of calls
\rightarrow "Capacity" $C=\left(\frac{A_{\text {total }}}{A_{\text {cell }}} \times m=\frac{A_{\text {total }}}{A_{\text {cell }}} \times \frac{S}{N}\right.$ Ob se, ration 2 This formula suggests that if the cluster size N is reduced, more capacity is achieved.*

Cluster size (N)

- There are only certain cluster sizes and cell layouts which are possible [Mac Donald, 1979].
- N can only have values which satisfy

$$
N=i^{2}+i \times j+j^{2}
$$

where i and j are non-negative integers.

Cluster Size (N)

$i=1, j=1$	3
$i=1, j=2$	7

- Exercise: For $N=4$, what are the values of i and j ?

$$
\begin{aligned}
& i=2, j=0 \\
& i=0, j=2
\end{aligned}
$$

Locating co-channel cells

- To locate the nearest cochannel neighbors of a
- Try $N=19$ particular cell,
- move i cells along any chain of hexagons and then (left)
- tut 60 degrees counterclockwise and move j cells.
- $\mathrm{i}=3$
- $\mathrm{j}=2$

$$
3^{2}+2 \cdot 3+2^{2}=9+6+4=19
$$

Locating co-channel cells ($\mathrm{N}=3$)

- To locate the nearest cochannel neighbors of a particular cell,
- move i cells along any chain of hexagons and then
- turn 60 degrees counterclockwise and move j cells.

Locating co-channel cells ($\mathrm{N}=4, \mathrm{~N}=7$)

$(i=2, j=1)$

$$
(i=2, j=0)
$$

Co-Channel Cells: Ex. $\mathrm{N}=3$

Co-Channel Cells: Ex. N = 3

Co-Channel Cells: Ex. $\mathrm{N}=3$

Co-Channel Cells: Ex. $\mathrm{N}=3$

Co-Channel Cells: Ex. $\mathrm{N}=3$

Co-Channel Cells: Ex. N = 3

